Логика Высказываний - это...

Логика Высказыванийили: Пропозициональная логика,  — раздел логики, формализующий употребление логичес­ких связок «и», «или», «не», «если, то» и т. п., служащих для образова­ния сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется с л о ж н ы м. В Л. в. простые выс­казывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением. В логике классической предполагается, что простое высказыва­ние является либо истинным, либо ложным (см.: Двузначности принцип) и что истинностное значение сложного высказывания зависит только от истинностных значений входящих в него про­стых высказываний и характера их связи. Так, соединение двух высказываний с помощью связки «и» дает сложное высказывание (именуемое конъюнкцией), являюще­еся истинным, только когда оба составляющие его высказывания истинны. Сложное высказывание, образованное с помощью связ­ки «или» (дизъюнкция), истинно, если и только если хотя бы одно из двух входящих в него высказываний истинно. Сложное выска­зывание, образованное с помощью «не» (отрицания), истинно, если только исходное высказывание ложно. Сложное высказывание, полученное из двух высказываний с помощью связки «если, то» (импликация), истинно в трех случаях: оба входящие в него выска­зывания истинны, оба они ложны, первое из этих высказываний (следующее за словом «если») ложно, а второе (следующее за сло­вом «то») истинно; импликация является ложной только когда первое из составляющих ее высказываний истинно, а второе ложно. Возможны и другие способы образования сложных высказыва­ний. Всего в классической двузначной логике четыре способа об­разования сложного высказывания из одного высказывания и ше­стнадцать способов образования сложного высказывания из двух высказываний. Язык Л. в. включает бесконечное множество переменных: р, q, r,..., p1, q1, r1, ..., представляющих высказывания, и особые символы для логических связок : & — конъюнкция («и»), v - дизъюнкция («или»),


Определения, значения слова в других словарях:

Философский словарь
- раздел логики, формализующий употребление логических связок "и", "или", "не", "если, то" и т. п., служащих для образования сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется...
Философский словарь
- раздел дедуктивной логики, в котором вопрос об истинности (или ложности) высказываний (т. е. суждений, рассматриваемых без их субъектно-предикатной структуры) в умозаключениях рассматривается на основе изучения следующего средства их выражения - т. н. элементарных (далее не...

Поделиться:

Реклама