Логицизм - это...

- концепция, сводящая математику к логике. Согласно Л., логика и математика соотносятся между собой как части одной и той же науки: математика может быть получена из чистой логики без введения дополнительных основных понятий или дополнительных допущений. Под логикой при этом понимается теория дедуктивного рассуждения (см.: Дедукция). Л. восходит к идее Г. Лейбница (1646-1716) о "сводимости математики к логике". Во второй половине прошлого века немецкий логик Г. Фреге (1848-1925) сформулировал арифметику чисто логически, но, столкнувшись с парадоксами, признал свою попытку безнадежной. В дальнейшем тезис Л. развивали англ. философы и логики Б. Рассел (1872-1970) и А. Уайтхед (1861-1947). Против идеи, что математические понятия можно свести к логическим понятиям с помощью явных определений и затем вывести математические теоремы из логических аксиом, обычно выдвигаются следующие возражения. Прежде всего, для сведения математики к логике приходится принимать аксиому бесконечности, предполагающую существование бесконечных множеств. Сам Б. Рассел вынужден был признать, что она не является собственно логической. Далее, вывод математики из логики в какой-то степени содержит круг. Всегда имеются необоснованные предпосылки, которые должны быть приняты на веру или интуитивно. Можно попытаться уменьшить их число, но нельзя избавиться от них совсем. Различение, что из этих предпосылок относится к математике, а что - к логике, лежащей в ее основе, носит субъективный и по существу произвольный характер. И наконец, в 1931 г. К. Гёдель показал, что все системы аксиоматически построенной арифметики существенно неполны: их средствами невозможно доказать некоторые содержательные истинные арифметические утверждения. Основной тезис Л. следует, таким образом, признать опровергнутым. Это не означает, что Л. был совершенно бесплодным. Его сторонники добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат, как принято считать, словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем. Однако в целом Л. оказался утопической концепцией.


Поделиться:

Реклама